在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的方程;(2)当AB中点在直线上时,求直线AB的方程.
(本小题满分14分) 已知数列满足 (I)证明:数列是等比数列; (II)求数列的通项公式; (III)若数列满足证明是等差数列
(本小题满分12分) 如图,四面体ABCD中,O、E分别是BD、BC的中点, (I)求证:平面BCD; (II)求点E到平面ACD的距离 .
(本小题满分14分) 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (Ⅰ) 写出图一表示的市场售价与时间的函数关系式P=; 写出图二表示的种植成本与时间的函数关系式Q=; (Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大? (注:市场售价和种植成本的单位:元/kg,时间单位:天)
(本小题满分13分) 等差数列中,且成等比数列,求数列前20项的和.
(本小题满分13分) 在中,,. (Ⅰ)求的值; (Ⅱ)设,求的面积.