(本小题满分12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求点E到平面ACD的距离 .
在直角坐标平面中,△ABC的两个顶点为 A(0,-1),B(0, 1)平面内两点G、M同时满足①,②= = ③∥ (1)求顶点C的轨迹E的方程 (2)设P、Q、R、N都在曲线E上 ,定点F的坐标为(, 0) ,已知∥,∥且·= 0.求四边形PRQN面积S的最大值和最小值.
(本小题满分13分)如图,在直三棱柱ABC—中,AB = 1,;点D、E分别在上,且, 四棱锥与直三棱柱的体积之比为3:5。 (1)求异面直线DE与的距离;(8分) (2)若BC =,求二面角的平面角的正切值。(5分)
(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司 缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元 的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率 分别为且各车是否发生事故相互独立,求一年内该单位在此保险中: (1)获赔的概率;(4分) (2)获赔金额的分别列与期望。(9分)
(本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0), 右准线l的方程为:x = 12。 (1)求椭圆的方程;(4分) (2)在椭圆上任取三个不同点,使, 证明:为定值,并求此定值。(8分)
(本小题满分12分)已知各项均为正数的数列{}的前n项和满足,且 (1)求{}的通项公式;(5分) (2)设数列{}满足,并记为{}的前n项和, 求证:. (7分)