(本小题满分12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求点E到平面ACD的距离 .
如图,四边形PCBM是直角梯形,,∥,.又,,直线AM与直线PC所成的角为. (1)求证:; (2)求二面角的余弦值.
现有长分别为、、的钢管各根(每根钢管质地均匀、粗细相同且附有不同的编号),从中随机抽取根(假设各钢管被抽取的可能性是均等的,),再将抽取的钢管相接焊成笔直的一根. (1)当时,记事件{抽取的根钢管中恰有根长度相等},求; (2)当时,若用表示新焊成的钢管的长度(焊接误差不计),①求的分布列; ②令,,求实数的取值范围.
如图,在△中,,为中点,.记锐角.且满足. (1)求; (2)求边上高的值.
已知各项均为正数的数列{a}满足a=2a+aa,且a+a=2a+4,其中n∈N. (Ⅰ)若b=,求数列{b}的通项公式; (Ⅱ)证明:++…+>(n≥2).
如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB. (Ⅰ)求椭圆C的离心率; (Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.