设定义在R上的函数,对任意有,且当时,恒有,(1)求;(2)判断该函数的奇偶性;(3)求证: 时 ,为单调递增函数.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上的点的最小距离.
如图,已知为锐角△的内心,且,点为内切圆与边的切点,过点作直线的垂线,垂足为.(1)求证:;(2)求的值.
已知双曲线与椭圆有相同的焦点,点、分别是椭圆的右、右顶点,若椭圆经过点.(1)求椭圆的方程;(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.
设为常数,已知函数在区间上是增函数,在区间上是减函数.(1)设为函数的图像上任意一点,求点到直线的距离的最小值;(2)若对任意的且,恒成立,求实数的取值范围.
如图,四棱锥的底面是正方形,⊥底面,点在棱上.(1)求证:平面⊥平面;(2)当且为的中点时,求与平面所成角的正弦值.