设定义在R上的函数,对任意有,且当时,恒有,(1)求;(2)判断该函数的奇偶性;(3)求证: 时 ,为单调递增函数.
(满分12分)已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
(满分12分)已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成的角; (Ⅲ)求面与面所成二面角的余弦值。
.4.命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。
(本小题满分14分)设函数对任意实数都有且时。(Ⅰ)证明是奇函数;(Ⅱ)证明在内是增函数;(Ⅲ)若,试求的取值范围。
(本小题满分14分)如图,在正方体中,棱长是1,(1)求证:;(2)求点的距离。