设数列满足(I)求数列的通项公式;(II)设求数列的前项和.
在平面直角坐标系,已知圆心在第二象限、半径为的圆C与直线y=x相切于 坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为. (1)求圆C的方程; (2)圆C上是否存在异于原点的点Q,使(F为椭圆右焦点),若存在,请 求出点Q的坐标;若不存在,请说明理由.
设平面向量,若存在实数和角,其中,使向量,且. (1).求的关系式; (2).若,求的最小值,并求出此时的值.
观察下列三角形数表 1 -----------第一行 2 2 -----------第二行 3 4 3 -----------第三行 4 7 7 4 -----------第四行 5 11 14 11 5 …… … … …… … …… 假设第行的第二个数为, (Ⅰ)依次写出第六行的所有个数字; (Ⅱ)归纳出的关系式并求出的通项公式; (Ⅲ)设求证:…
如图,在组合体中,是一个长方体,是一个四棱锥.,,点且. (Ⅰ)证明:; (Ⅱ)若,当为何值时,.
已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" , 设. (1)求证:当恒成立; (2)试讨论关于的方程:根的个数.