已知函数(1)讨论函数的单调区间;(2)如果存在,使函数在处取得最小值,试求的最大值.
已知点和圆:.(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数的点称为整点),求出点的坐标.
如图,已知四棱锥中,底面是直角梯形,,,,,平面,. (Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)若是的中点,求三棱锥的体积.
光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.
正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是( )
如图,圆:.(Ⅰ)若圆与轴相切,求圆的方程;(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.