已知数列的各项均为正数,为其前项和,对于任意的,满足关系式(1)求数列的通项公式;(2)设数列的通项公式是,前项和为,求证:对于任意的正整数n,总有
设函数(1)设的内角,且为钝角,求的最小值;(2)设是锐角的内角,且求的三个内角的大小和AC边的长。
一个多面体的直观图和三视图如下:(其中分别是中点)(1)求证:平面;(2)求多面体的体积.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.(1)设N为EF上一点,当时,有DN ∥平面AEM,求 的值;(2)试探究点M的位置,使平面AME⊥平面AEF。
如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.(1)求证:平面平面;(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1;(3)求四面体EFGB1的体积.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.