已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.(1)求证:平面;(2)求折后直线与平面所成角的余弦值.
已知关于的一元二次函数,设集合,分别从集合P和Q中随机取一个数作为和(1)求函数有零点的概率;(2)求函数在区间上是增函数的概率。
已知数列满足:其中,数列满足:(1)求;(2)求数列的通项公式;(3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.
已知函数(1)若方程内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数)(2)如果函数的图象与x轴交于两点、且.求证:(其中正常数).
已知椭圆C的两个焦点分别为,且点在椭圆C上,又.(1)求焦点F2的轨迹的方程;(2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.