如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB 上一个动点,过P点作PF//AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)①填空:如果BP=,则BG= ;②用x的代数式表示线段DG的长,并直接写出自变量x的取值范围;(2)记△DEF的面积为S,求S与x之间的函数关系式。(3)当以P、E、F为顶点的三角形与△EDG相似时,请求出BP的长。
课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在第天。
如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF丄BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=:4,其中正确结论的序是①②③④.(错填得0分,少填酌情给分).
如图所示,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).求出△ABC的面积;在图中作出△ABC关于y轴的对称图形△A1B1C1;写出点A1,B1,C1的坐标.
如图,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,说明理由。
如图所示,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).写出点A、B的坐标;将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,分别写出△A′B′C′的三个顶点坐标;