已知:直线交轴于点,交轴于点,抛物线经过、、(1,0)三点.(1)求抛物线的解析式;(2)若点的坐标为(-1,0),在直线上有一点,使与相似,求出点的坐标;(3)在(2)的条件下,在轴下方的抛物线上,是否存在点,使的面积等于四边形的面积?如果存在,请求出点的坐标;如果不存在,请说明理由.
若关于的一元二次方程.(1)求证:无论取何实数,原方程总有两个不相等的实数根;(2)若原方程有一个根为,求的值和此方程的另一个根.
如图,某小区有一块长为24米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为72米2,两块绿地之间及周边留有宽度相等的人行通道,求人行道的宽度.
先化简,再求值:,其中是方程的根.
解下列方程:(1);(2)(用配方法).
如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).