如图,已知平面,平面,△为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线和平面所成角的正弦值.
在△ABC中,a、b、c分别为角A、B、C所对的边,且(2b+c)cosA+acosC =0(1)求角A的大小:(2)求的最大值,并求取得最大值时角 B.C的大小.
已知函数g(x)="aln" x·f(x)=x3 +x2+bx(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.
已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数).(1)求椭圆C的方程;(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.
已知数列{an}满足a1>0,an+1=2-,。(1)若a1,a2,a3成等比数列,求a1的值;(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1,若不存在,说明理由。
如图(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,点0,M,N分别为线段的中点,将AABO和AMNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.(1)求证:AB//平面CMN;(2)求平面ACN与平面CMN所成角的余(3)求点M到平面ACN的距离.