(本小题满分12分)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂(Ⅰ)求从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)="-3." (1)证明:函数y=f(x)是R上的减函数; (2)证明:函数y=f(x)是奇函数; (3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
判断下列各函数的奇偶性: (1)f(x)=(x-2); (2)f(x)=; (3)f(x)=
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x). (1)求证:f(x)是周期函数; (2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 009]上的所有x的个数.
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数; (2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
判断下列函数的奇偶性. (1)f(x)=; (2)f(x)=log2(x+) (x∈R); (3)f(x)=lg|x-2|.