(本小题满分12分)已知,函数,时,,求常数,的值.
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线 (1)求曲线C的方程, (2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,三棱柱的侧棱平面,为等边三角形,侧面是正方形,是的中点,是棱上的点. (1)若是棱中点时,求证:平面; (2)当时,求正方形的边长.
某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据: 若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R). (1)试预测当广告费支出为12万元时,销售额是多少? (2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
已知在数列{}中, (1)求证:数列{}是等比数列,并求出数列{}的通项公式; (2)设数列{}的前竹项和为Sn,求Sn.
已知函数 (1)当a=1时,解不等式 (2)若存在成立,求a的取值范围.