已知m∈R,对p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“p且q”为假命题、“p或q”为真命题的实数m的取值范围.
(满分15分)动圆过定点且与直线相切,圆心的轨迹为曲线,过作曲线两条互相垂直的弦,设的中点分别为、.(1)求曲线的方程;(2)求证:直线必过定点.
某种鲜花进价每束元,售价每束元,若卖不出,则以每束元的价格处理掉。某节日需求量(单位:束)的分布列为
(Ⅰ)若进鲜花束,求利润的均值。(Ⅱ)试问:进多少束花可使利润的均值最大?
(满分14分)已知.(1)求的周期及其图象的对称中心;(2)中,角所对的边分别是,满足,求的取值范围.
(本小题满分14分)如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
(本小题满分12分)如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且. (Ⅰ)求证:平面平面;(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为?