数列是首项的等比数列,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,设为数列的前项和,若对一切恒成立,求实数的最小值.
(本小题满分12分)已知圆经过、两点,且圆心在直线上. (1)求圆的方程; (2)若直线经过点且与圆相切,求直线的方程.
(本小题满分12分)如图所示,凸多面体中,平面,平面,,,,为的中点.(1)求证:平面;(2)求证:平面平面.
(本小题满分12分)袋中有大小、形状相同的红、黑球各一个,现有放回地随机摸3次,每次摸取一个球,考虑摸出球的颜色。(1)试写出此事件的基本事件空间; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分不小于5分的概率。
(本小题满分10分)选修4-5:不等式选讲设函数(I)若a=-1,解不等式(II)如果的取值范围。
请考生在22、23两题中任选一题作答,如果都做,则按所做的第一题记分。(本小题满分10分)选修4-1:几何证明选讲如图,AB是⊙O的直径,C、F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M。(I)求证:DC是⊙O的切线; (II)求证:AM:MB=DF·DA。