如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.(1)求GH长的取值范围;(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
(本小题满分13分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请求出上表中的,并直接写出函数的解析式;(Ⅱ)将的图象沿轴向右平移个单位得到函数,若函数在(其中)上的值域为,且此时其图象的最高点和最低点分别为,求与夹角的大小。
(本小题满分13分)若数列满足N*).(1)求的通项公式;(2)等差数列的各项均为正数,其前n项和为,且,又成等比数列,求.
已知函数.(Ⅰ)若在处取得极大值,求实数a的值;(Ⅱ)若,直线都不是曲线的切线,求的取值范围;(Ⅲ)若,求在区间[0,1]上的最大值.
已知椭圆的右焦点为,实轴的长为.(1)求椭圆的标准方程;(2)过点作两条互相垂直的直线分别交椭圆于点和,求的最小值.
设数列的前项和为 ,点在直线上,.(1)求证:数列是等比数列,并求其通项公式;(2)设直线与函数的图像交于点,与函数的图像交于点,记(其中为坐标原点),求数列的前项和.