已知数列{}、{}、{}满足,.(1)设,,求数列{}的前n项和Sn; (2)设,{}是公差为2的等差数列,若,求{}的通项公式;(3)设,,求证整数k使得对一切,均有bn≥bk.
已知函数. (Ⅰ)若函数在区间上有最小值,求的值. (Ⅱ)若同时满足下列条件①函数在区间上单调;②存在区间使得在上的值域也为;则称为区间上的闭函数,试判断函数是否为区间上的闭函数?若是求出实数的取值范围,不是说明理由.
已知函数 (Ⅰ)求函数的定义域; (Ⅱ)若,求的值; (Ⅲ)判断并证明该函数的单调性.
直线与轴,轴分别相交于A、B两点,以AB为边做等边,若平面内有一点使得与的面积相等,求的值.
在长方体中,,为棱的中点. (Ⅰ)求证面面; (Ⅱ)求三棱锥的体积
定义在上的偶函数,已知当时的解析式 (Ⅰ)写出在上的解析式; (Ⅱ)求在上的最大值.