在申办国家级示范性高中期间,某校拟用运动场的边角地建一个矩形的健身室. 如图所示,是一块边长为50m的正方形地皮,扇形是运动场的一部分,其半径为40m,矩形就是拟建的健身室,其中分别在和上,在弧上,设矩形的面积为,∠.(1) 试将表示为的函数;(2) 当点在弧的何处时,该健身室的面积最大?最大面积为多少?
已知等差数列的公差,其前n项和为,,;(1)求出数列的通项公式及前n项和公式(2)若数列满足,求数列的通项公式
已知分别为△ABC三个内角A,B,C的对边,(1)求A(2)若,△ABC的面积为,求b,c
已知:命题p:曲线与轴相交于不同的两点;命题表示焦点在轴上的椭圆.若“p且q” 是假命题,“”是假命题,求取值范围.
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点.(Ⅰ)求点M的轨迹方程;(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程;(Ⅲ)过的直线与轨迹E交于P、Q两点,求面积的最大值.
(本小题满分12分)数列记(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列的通项公式及数列的前n项和