如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.(1)将总造价y表示为关于的函数;(2)问花园如何设计,总造价最少?并求最小值.
(本小题满分13分) 已知函数,. (Ⅰ)若曲线在点处的切线与直线垂直,求的值; (Ⅱ)求函数的单调区间; (Ⅲ)当,且时,证明:.
(本小题满分13分) 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点; (Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于,两点,求的取值范围.
已知函数的定义域为,值域为。试求函数的最小正周期T和最值。
已知函数 (1)设为何值时,函数y取得最小值; (2)若函数y的最小值为1,试求a的值.
已知函数,.求: (Ⅰ)函数的最大值及取得最大值的自变量的集合; (II)函数的单调增区间.