某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
AD=2,PA=2,PD=2,∠PAB=60°。(1)证明:AD⊥平面PAB;(2)求异面直线PC与AD所成的角的大小;(3)求二面角P-BD-A的大小。
、已知数列 的前n项和Sn=2n2+2n数列 的前 n 项和 Tn=2-bn(1)求数列 与 的通项公式;(2)设Cn=an2·bn,证明当且仅当n≥3时,Cn+1<Cn
在△ABC中,内角A、B、C所对的边分别是a、b、c,已知c=2,C=(1)若△ABC的面积为,求a、b;(2)若sinB=2sinA,求△ABC的面积。
(本小题共12分)设函数,方程有唯一解,其中实数为常数,,(1)求的表达式;(2)求的值;(3)若且,求证:
(本小题共12分)设,点在轴的负半轴上,点在轴上,且.(1)当点在轴上运动时,求点的轨迹的方程;(2)若,是否存在垂直轴的直线被以为直径的圆截得的弦长恒为定值?若存在,求出直线的方程;若不存在,请说明理由.