函数f(x) 的定义域为R,且对任意x,y∈R 都有f(x+y)=f(x)+f(y),又当x>0 时,f(x)<0,且f(1)=-2.(Ⅰ)求证:f(x) 既是奇函数又是R上的减函数;(Ⅱ)求f(x)在[-3,3]的最大值和最小值.
已知函数。 (Ⅰ)设,讨论的单调性; (Ⅱ)若对任意恒有,求的取值范围。
设数列的前项的和, (Ⅰ)求首项与通项; (Ⅱ)设,,证明:.
在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求: (Ⅰ)点M的轨迹方程;(Ⅱ)的最小值。
1)设函数,求的最小值; (2)设正数满足, 求证
数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (1)求数列的通项公式; (2)若b=a4(), B是数列{b}的前项和, 求证:不等式 B≤4B,对任意皆成立. (3)令