设函数(1)求的单调区间;(2)若关于的方程在区间上有唯一实根,求实数的取值范围.
一蒸汽机火车每小时消耗煤的费用与火车行驶的速度的立方成正比,已知速度为时,每小时消耗的煤价值40元,其余费用每小时1250元,问火车行驶的速度是多少时(速度不超过),全程费用最少?
已知函数,函数⑴函数在处的切线与平行 ,求的值;⑵在⑴的条件下,求直线与函数的图象所围成图形的面积.
设p:方程表示是焦点在y轴上的椭圆;q:三次函数在内单调递增,.求使“”为真命题的实数m的取值范围.
已知函数(I)解不等式(II)若不等式的解集为空集,求a的取值范围。
在极坐标系中,O为极点,已知圆C的圆心为,半径r=1,P在圆C上运动。(I)求圆C的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程。(I)求圆C的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程。