如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为(不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.(1)求的取值范围;(运算中取)(2)若中间草地的造价为元,四个花坛的造价为元,其余区域的造价为元,当取何值时,可使“环岛”的整体造价最低?
在中,内角的对边分别为,,, (1)若,,求; (2)若,求.
若+=,-=,求、及与夹角的余弦值.
已知函数. (1)求函数的极值; (2)若对任意的,都有,求实数a的取值范围.
某大学自主招生面试时将20名学生平均分成甲,乙两组,其中甲组有4名女学生,乙组有6名女学生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行第一轮面试. (Ⅰ)求从甲、乙两组各抽取的人数; (Ⅱ)求从甲组抽取的学生中恰有1名女学生的概率; (Ⅲ)求抽取的4名学生中恰有2名男学生的概率.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求,,的值; (Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.