在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题.(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?
已知函数, (Ⅰ)若,求函数的极值; (Ⅱ)设函数,求函数的单调区间; (Ⅲ)若在区间()上存在一点,使得成立,求的取值范围.
已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程; (Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.
四棱锥中,底面为平行四边形,侧面底面,为的中点,已知, (Ⅰ)求证:; (Ⅱ)在上求一点,使平面; (Ⅲ)求三棱锥的体积.
甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别. (Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率; (Ⅱ)将这两个盒子中的球混合在一起,从中任取2个,求取出的2个球中至少有一个黑球的概率.
设. (1)解不等式; (2)若对任意实数,恒成立,求实数a的取值范围.