在中,,点P从点A开始沿AB边向点B以的速度移动,点Q从点B沿BC向点C以的速度移动.如果点P、Q分别从A、B同时出发.(1)几秒后,的面积等于;(2)经过几秒后,PQ之间的距离为;(3)在P、Q两点的运动过程中,可能是等腰三角形吗?请说明理由.
如图,AB=DE,BE=CF,AB∥DE求证:∠A=∠D
先化简,再求值:,其中x=-1,y=2.
分解因式
在平面直角坐标系xoy中,边长为的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限. ⑴当∠BAO=45°时,求点P的坐标; ⑵求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上; ⑶当B点坐标为(0,1)时,求CD的解析式。
某公司每月付给销售人员的工资有两种方案. 方案一:没有底薪,只拿销售提成; 方案二:底薪加销售提成 (注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用). 设销售商品的数量(件),销售人员的月工资(元).如图所示,为方案一的函数图象,为方案二的函数图象.从图中信息解答如下问题: ⑴求的函数函数关系式; ⑵求点A的坐标,并说出A点的实际意义; ⑶请问方案二中每月付给销售人员的底薪是多少元? ⑷如果该公司销售人员小丽的月工资要不低于1800元,那么小丽选用哪种方案最好?至少要销售商品多少件?