如图,在边长为1的小正方形组成的网格中,A、B两点均在格点上,且坐标分别为A(3,2);B(1,3). (1)点B关于y轴对称的点的坐标为 . (2)在网格线中描出点A、B,并画出△AOB,若将△AOB向左平移3个单位,再向上平移2个单位得到△A1O1B1,则点A1点坐标为 . (3)若以O、A、B、D为平行四边形的四个顶点,请写出第4个点D的坐标.
新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)
先化简,再求值 ,其中 =
计算:
已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
已知抛物线若抛物线经过原点,求m的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;是否无论m取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.