设数列满足(1)求数列的通项公式;(2)令,求数列的前n项和
已知函数.(Ⅰ)若曲线在点处的切线与直线平行,求实数的值;(Ⅱ)若函数在处取得极小值,且,求实数的取值范围.
已知函数,钝角(角对边为)的角满足.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,求.
已知数列的前项和为满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.
已知数列的前项和为满足.(Ⅰ)函数与函数互为反函数,令,求数列的前项和;(Ⅱ)已知数列满足,证明:对任意的整数,有.