如图,矩形A1A2A′2A′1,满足B、C在A1A2上,B1、C1在A′1A′2上,且BB1∥CC1∥A1A′1,A1B=CA2=2,BC=2,A1A′1=,沿BB1、CC1将矩形A1A2A′2A′1折起成为一个直三棱柱,使A1与A2、A′1与A′2重合后分别记为D、D1,在直三棱柱DBC-D1B1C1中,点M、N分别为D1B和B1C1的中点.(I)证明:MN∥平面DD1C1C;(Ⅱ)若二面角D1-MN-C为直二面角,求的值.
已知函数,. (1)求方程=0的根; (2)求的最大值和最小值.
已知正项数列满足: (1)求的范围,使得恒成立; (2)若,证明: (3)若,证明:
已知函数,其中. (1)若是的极值点,求的值; (2)求的单调区间; (3)若在上的最大值是,求的取值范围.
如图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B. (1)求椭圆C的方程. (2)证明:直线MA、MB与x轴围成一个等腰三角形.
如图,在直三棱柱中,,,是的中点. (1)求证:∥平面; (2)求二面角的余弦值; (3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.