如图,矩形A1A2A′2A′1,满足B、C在A1A2上,B1、C1在A′1A′2上,且BB1∥CC1∥A1A′1,A1B=CA2=2,BC=2,A1A′1=,沿BB1、CC1将矩形A1A2A′2A′1折起成为一个直三棱柱,使A1与A2、A′1与A′2重合后分别记为D、D1,在直三棱柱DBC-D1B1C1中,点M、N分别为D1B和B1C1的中点.(I)证明:MN∥平面DD1C1C;(Ⅱ)若二面角D1-MN-C为直二面角,求的值.
在中,角所对的边分别是,且 (1)求角; (2)若,试求的最小值.
已知, , 当k为何值时: (1)与垂直? (2)与平行? 是同向还是反向? (3)试用表示。
已知正项等比数列 (1)求数列的通项公式; (2)若分别是等差数列的第3项和第5项,求数列的通项公式及前n项和
设是正项数列的前项和,且(). (Ⅰ)求数列的通项公式; (Ⅱ)若,设,求数列的前项和.
数列的前项和记为,,点在直线上,. (Ⅰ)当实数为何值时,数列是等比数列? (Ⅱ)在(Ⅰ)的结论下,设,是数列的前项和,求的值.