如图(1)是某种台灯的示意图,灯柱BC固定垂直于桌面,AB是转轴,可以绕着点B按顺时针方向转动,AB=10cm,BC=20cm,圆锥形灯罩的轴截面△APQ是等腰直角三角形,∠PAQ=90°,且PQ∥AB.转动前,点A、B、C在同一直线上.(1)转动AB,如图(2)所示,若灯心A到桌面的距离AM=25cm,求∠ABC的大小;(2)继续转动AB,当光线AP第一次经过点C,求此时灯心A到桌面的距离AM长.(假设桌面足够大)
某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题: (1)在y轴()内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时? (3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式; (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位, (1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1; (2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标. (3)求△ABC的面积.
已知直线y=kx+b经过点A(5,0),B(1,4). (1)求直线AB的解析式; (2)若直线y=2x-4与直线AB相交于点C,求点C的坐标; (3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
已知一次函数y=kx+b的图象经过点(-2,-4),且与正比例函数的图象相交于点(4,a),求: (1)a的值; (2)k、b的值; (3)画出这两个函数图象,并求出它们与y轴相交得到的三角形的面积.