将边长为米的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少米?方盒的最大容积为多少?
(本小题满分10分) 已知抛物线与直线交于两点. (Ⅰ)求弦的长度; (Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.
(本小题满分12分) 在如图的多面体中,⊥平面,,,,,,,是的中点. (Ⅰ) 求证:平面; (Ⅱ) 求二面角的余弦值.
如图,设、分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点与、与的横坐标分别相等,纵坐标分别同号. (Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程; (Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.
如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形. (Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程; (Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大? 并求其最大值.
(本小题满分12分) 已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点. (Ⅰ)证明:为钝角. (Ⅱ)若的面积为,求直线的方程;