如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.(1)求证:平面;(2)设的中点为,求证:平面;(3)设平面将几何体分成的两个锥体的体积分别为,,求.
函数. (1)求函数的极值; (2)设函数,对,都有,求实数m的取值范围.
已知a>0,且.设命题:函数在(0,+∞)上单调递减,命题:曲线与x轴交于不同的两点,如果是假命题,是真命题,求a的取值范围.
已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.
设函数. (1)当时,求函数的极大值; (2)若函数的图象与函数的图象有三个不同的交点,求的取值范围; (3)设,当时,求函数的单调减区间.
如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的. (1)求椭圆的离心率; (2)求与的值; (3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.