如图所示,某海滨浴场东西走向的海岸线可近似看作直线. 救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号. 他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙. 乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东方向,甲、乙的游泳速度均是2米/秒.问谁先到达B处?请说明理由.
求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的 ΔABC 及线段 A ' B ' , ∠ A ' ( ∠ A ' = ∠ A ) ,以线段 A ' B ' 为一边,在给出的图形上用尺规作出△ A ' B ' C ' ,使得△ A ' B ' C ' ∽ ΔABC ,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
如图, ▱ ABCD 的对角线 AC , BD 相交于点 O , EF 过点 O 且与 AD , BC 分别相交于点 E , F .求证: OE = OF .
已知四边形 ABCD 是 ⊙ O 的内接四边形, AC 是 ⊙ O 的直径, DE ⊥ AB ,垂足为 E .
(1)延长 DE 交 ⊙ O 于点 F ,延长 DC , FB 交于点 P ,如图1.求证: PC = PB ;
(2)过点 B 作 BG ⊥ AD ,垂足为 G , BG 交 DE 于点 H ,且点 O 和点 A 都在 DE 的左侧,如图2.若 AB = 3 , DH = 1 , ∠ OHD = 80 ° ,求 ∠ BDE 的大小.
“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.
根据以上信息,解决下列问题:
(1)条形统计图中“汤包”的人数是 ,扇形统计图中“蟹黄包”部分的圆心角为 ° ;
(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?