已知函数.(1)若在上的最大值为,求实数的值;(2)若对任意,都有恒成立,求实数的取值范围;(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
已知函数,其中. (Ⅰ)若函数为奇函数,求实数的值; (Ⅱ)若函数在区间上单调递增,求实数的取值范围.
已知公差不为0的等差数列的首项,且成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为,求数列的前n项和.
设,集合,. (Ⅰ)当a=3时,求集合; (Ⅱ)若,求实数的取值范围.
设函数,其中。 (Ⅰ)若,求a的值; (Ⅱ)当时,讨论函数在其定义域上的单调性; (Ⅲ)证明:对任意的正整数,不等式都成立。
请先阅读: (Ⅰ)利用上述想法(或其他方法),结合等式(,整数),证明:; (Ⅱ)当整数时,求的值; (Ⅲ)当整数时,证明:.