设函数f(x)="|2x-1|+|2x-3|" , x∈R.(Ⅰ)解不等式f(x)≤5;(Ⅱ)若的定义域为R,求实数m的取值范围.
已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).(1)证明:数列{an}是等比数列;(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.
设f(x)=+xln x,g(x)=x3-x2-3.(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t∈,都有f(s)≥g(t)成立,求实数a的取值范围.
已知函数f(x)=lnx+ax(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
已知函数f(x)=x2+xsinx+cosx.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.