某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______人,估计全校同学在暑假期间平均每天做家务活的时间在30分钟以上(含30分钟)的人数为_______人;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、丙两名同学的概率.
(1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由; (2)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF. (1)求证:△ADE≌△BFE; (2)连接EG,判断EG与DF的位置关系并说明理由.
如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E,CE=20cm,求CD的长.
证明能被20∽30之间的两个整数整除.
作图题:有公路同侧、异侧的两个城镇A、B,如下图,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路、的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置。(保留作图痕迹,不写作法).