哈尔滨市五一期间决定在省妇女儿中心举行中学生“蓝天绿树、爱护环境”围棋比赛,规定如下:两名选手比赛时每局胜者得1分,负者得0分,比赛进行到有一人比对方多3分或打满7局时停止.设某学校选手甲和选手乙比赛时,甲在每局中获胜的概率为,且各局胜负相互独立.已知第三局比赛结束时比赛停止的概率为.(1)求的值;(2)求甲赢得比赛的概率;(3)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线(为参数),(为参数). (1)化的方程为普通方程; (2)若上的点对应的参数为为上的动点,求中点到直线(为参数)距离的最小值.
(本小题满分10分)选修4-1:几何证明选讲 已知在中,是上一点,的外接圆交于,. (1)求证:; (2)若平分,且,求的长.
设函数,曲线过点P(1,0),且在P点处的切线的斜率为2, (1)求的值。 (2)证明:
(本小题满分12分)已知直线与椭圆相交于、两点. (1)若椭圆的离心率为,焦距为,求线段的长; (2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示. (1)求频率分布直方图中的值; (2)分别求出成绩落在与中的学生人数; (3)从成绩在的学生中任选人,求此人的成绩都在中的概率.