本小题满分12分的内切圆与三边的切点分别为,已知,内切圆圆心,设点的轨迹为.(1)求的方程;(2)过点的动直线交曲线于不同的两点(点在轴的上方),问在轴上是否存在一定点(不与重合),使恒成立,若存在,试求出点的坐标;若不存在,说明理由.
已知都是正数,求证:.
已知,,为的三边,求证:.
无论取任何非零实数,试证明等式总不成立.
求证:.
已知直线过定点与圆:相交于、两点. 求:(1)若,求直线的方程; (2)若点为弦的中点,求弦的方程.