小强和爸爸上山游玩,两人距地面的高度y(米)与小强登山时间x之间的函数图象分别如图中折线OAC和线段DE所示,根据函数图象进行以下探究:信息读取:(1)爸爸登山的速度是每分钟 米;(2)请解释图中点B的实际意义;图象理解:(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(4)计算并填空:m= ;问题解决:(5)若小强提速后,他登山的速度是爸爸速度的3倍,问小强登山多长时间时开始提速?此时小强距地面的高度是多少米?
绵阳某公司销售部统计了每个销售员在某月的销售额, 绘制了如下折线统计图和扇形统计图:
设销售员的月销售额为 x (单 位: 万元) . 销售部规定: 当 x < 16 时为“不称职”, 当 16 ⩽ x < 20 时为“基本称职”, 当 20 ⩽ x < 25 时为“称职”, 当 x ⩾ 25 时为“优秀” . 根据以上信息, 解答下列问题:
(1) 补全折线统计图和扇形统计图;
(2) 求所有“称职”和“优秀”的销售员月销售额的中位数和众数;
(3) 为了调动销售员的积极性, 销售部决定制定一个月销售额奖励标准, 凡月销售额达到或超过这个标准的销售员将获得奖励 . 如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖, 月销售额奖励标准应定为多少万元 (结 果取整数) ?并简述其理由 .
如图①,已知抛物线 y = a x 2 + bx + c 的图象经过点 A ( 0 , 3 ) 、 B ( 1 , 0 ) ,其对称轴为直线 l : x = 2 ,过点 A 作 AC / / x 轴交抛物线于点 C , ∠ AOB 的平分线交线段 AC 于点 E ,点 P 是抛物线上的一个动点,设其横坐标为 m .
(1)求抛物线的解析式;
(2)若动点 P 在直线 OE 下方的抛物线上,连接 PE 、 PO ,当 m 为何值时,四边形 AOPE 面积最大,并求出其最大值;
(3)如图②, F 是抛物线的对称轴 l 上的一点,在抛物线上是否存在点 P 使 ΔPOF 成为以点 P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由.
如图①,在四边形 ABCD 中, AC ⊥ BD 于点 E , AB = AC = BD ,点 M 为 BC 中点, N 为线段 AM 上的点,且 MB = MN .
(1)求证: BN 平分 ∠ ABE ;
(2)若 BD = 1 ,连接 DN ,当四边形 DNBC 为平行四边形时,求线段 BC 的长;
(3)如图②,若点 F 为 AB 的中点,连接 FN 、 FM ,求证: ΔMFN ∽ ΔBDC .
传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第 x 天生产的粽子数量为 y 只, y 与 x 满足如下关系:
y = 34 x ( 0 ⩽ x ⩽ 6 ) 20 x + 80 ( 6 < x ⩽ 20 )
(1)李明第几天生产的粽子数量为280只?
(2)如图,设第 x 天生产的每只粽子的成本是 p 元, p 与 x 之间的关系可用图中的函数图象来刻画.若李明第 x 天创造的利润为 w 元,求 w 与 x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润 = 出厂价 − 成本)
为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.
某班参加球类活动人数统计表
项目
篮球
足球
排球
羽毛球
乒乓球
人数
m
6
8
4
请根据图表中提供的信息,解答下列问题:
(1)图表中 m = , n = ;
(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为 人;
(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用 A , B , C 表示)和1位女同学(用 D 表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.