判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果两个角不等,那么这两个角一定不是对顶角;(2)两个锐角的和一定是钝角;
如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米)。
解方程:.
计算:.
如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动。设动点运动时间为t秒。(1)求AD的长.(2)当△PDC的面积为15平方厘米时,求的值.(3)动点M从点C出发以每秒2厘米的速度在线段CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动。是否存在t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.
阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(直接给出结论,不必证明)(2)在Rt△ABC中,∠ACB=90°,AB=,AC=,BC=,且,若Rt△ABC是奇异三角形,求;