如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.
(本小题共14分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
(本小题共13分)根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示(1)求上图中的值;(2)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);(3)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明)
(本小题共13分)已知函数,(1)求实数的值;(2)求函数的最小正周期及单调增区间.
(本小题共13分)已知在等比数列中,,且是和的等差中项.(1)求数列的通项公式;(2)若数列满足,求的前项和.
(本小题共15分)已知函数对任意实数恒有且当x>0,(1)判断的奇偶性;(2)求在区间[-3,3]上的最大值;(3)解关于的不等式