设函数,记的导函数,的导函数,的导函数,…,的导函数,.(1)求;(2)用n表示;(3)设,是否存在使最大?证明你的结论.
.(13分)已知集合, (1)当时,求; (2)若,求实数的取值范围.
(13分)已知(1)求的值;(2)求的值.
.数列满足:,且(1)设,证明数列是等差数列;(2)求数列、的通项公式;(3)设,为数列的前项和,证明.
已知圆C:.(1)直线过点P(1,2),且与圆C交于A、B两点,若,求直线的方程;(2)过圆C上一动点M作平行于y轴的直线m,设直线m与x轴的交点为N,若向量,求动点的轨迹方程;(3) 若点R(1,0),在(2)的条件下,求的最小值及相应的点坐标.
.已知函数,若存在使得恒成立,则称是的一个“下界函数” .(I)如果函数(为实数)为的一个“下界函数”,求的取值范围;(II)设函数,试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.