如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点M及抛物线顶点P的坐标;(2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
先化简、再求值:,其中.
△ABC在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位. (1)△与△ABC关于纵轴(轴)对称,请你在图5中画出△; (2)将△ABC向下平移8个单位后得到△,请你在图5中画出△.
解方程:.
如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数上,且与x轴交于AB两点. (1)若二次函数的对称轴为,试求a,c的值; (2)在(1)的条件下求AB的长; (3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式.
如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,过点D作DE⊥AC,垂足为E. (1)求证:DE是⊙O的切线; (2)如果BC=8,AB=5,求CE的长.