由于某高中建设了新校区,为了交通方便要用三辆通勤车从老校区把教师接到新校区.已知从新校区到老校区有两条公路,汽车走一号公路堵车的概率为,不堵车的概率为;汽车走二号公路堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走一号公路,丙汽车由于其他原因走二号公路,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求走二号公路堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
若、为双曲线的左右焦点,O为坐标原点,P在双曲线左支,在右准线上,且满足, (1)求双曲线离心率; (2)若双曲线过点N(2,),它的虚轴端点为,(在轴正半轴上)过作直线与双曲线交于A、B两点,当⊥时,求直线的方程。
长度为的线段AB的两个端点A、B在抛物线上运动,求AB中点到轴的最短距离。
如图,在直四棱柱中,底面是梯形,且,,,是棱的中点. (1)求证:; (2)求点到平面的距离; (3)求二面角的大小.
在五棱锥中,,, (1)求证:平面; (2)求二面角的大小; (3)求点C到平面PDE的距离.
平面上有两个质点A,B,在某一时刻开始每隔1秒向上下左右任一方向移动一个单位. 已知质点A向左,右移动的概率都是,向上,下移动的概率分别是和,质点B向四个方向移动的概率均为.(1)求和的值;(2)试判断至少需要几秒,A、B能同时到达D,并求出在最短时间同时到达的概率?