(本小题满分12分)某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”。通过调查分别得到如图1所示统计表如图2所示各年龄段人数频率分布直方图:请完成下列问题:(1)补全频率分布直方图,并求的值;(2)从岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,求选取的3名领队年龄在岁的人数为X,求X的分布列和期望E(X)。
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点. (Ⅰ)写出C的方程; (Ⅱ)若,求k的值; (Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||
. (14分) 某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件. (1)求分公司一年的利润(万元)与每件产品的售价的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.
在四棱锥中,底面为菱形,,, , ,为的中点,为的中点 (Ⅰ)证明:直线; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。
已知是等差数列,其前n项和为Sn,已知 (1)求数列的通项公式; (2)设,证明是等比数列,并求其前n项和Tn.
( 12分) 已知在与时都取得极值. (Ⅰ)求的值; (Ⅱ)若,求的单调区间和极值。