计算:
(本题满分10分)如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.(1)写出的值;(2)判断的形状,并说明理由;(3)在线段上是否存在点,使∽?若存在,求出点的坐标;若不存在,说明理由.
(本题满分10分)如图,直角梯形ABCD中,AD∥BC,∠A=90°,,交AB于E,DF平分∠EDC交BC于F,连结EF.(1)证明:;(2)当时,求EF的长.
(本题满分8分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.(1)求证:是的切线;(2)若的半径为2,求图中阴影部分的面积.
(本题满分8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD∥BC且使AD =BC,连接CD;(2)线段AC的长为 ,CD的长为 ,AD的长为 ;(3)△ACD为 三角形,四边形ABCD的面积为 ;(4)若E为BC中点,则tan∠CAE的值是 .