如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.并根据图像写出:(3)方程的解;(4)使一次函数的值大于反比例函数的值的的取值范围;
如图,在菱形ABCD中,E是AB的中点,且DE⊥AB, AB=a. (1)求∠ABC的度数; (2)求对角线AC的长; (3)求菱形ABCD的面积.
一个不透明口袋中装有6个红球、9个黄球、3个绿球,这些球除颜色外没有任何区别.从中任意摸出一个球. (1)求摸到绿球的概率; (2)再向口袋中放入几个绿球,才能使摸到绿球的概率为?
已知求的值.
在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动. (1)第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程. (2)第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值. (3)探究活动结束后,老师给大家留下了一道探究题: 如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°, 请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.
已知:在△ABC中,AB=AC,∠B=30°,BC=6,动点P以每秒个单位从点B出发沿线段BA、AC运动,过点P作边长为3的等边△FDE,使得点D在线段BC上,点E在线段DC上. (1)如图(1),当EF经过点A时,动点P运动时间t为多少? (2)设点P运动t秒时,△ABC与△DEF重叠部分面积为S,求S关于t的函数关系式. (3)如图(2),在点P的运动过程中,是否存在时间t,使得以点P为圆心,AP为半径的圆与△FDE三边所在的直线相切.如果存在,请直接写出t的值;如不存在,说明理由.