如图,四边形ABCD中,AB = AD,∠BAD=90°,∠CBD=30°,∠BCD=45°,若AB=.求四边形的面积.
如图,已知二次函数 y 1 = a x 2 + bx 过 ( − 2 , 4 ) , ( − 4 , 4 ) 两点.
(1)求二次函数 y 1 的解析式;
(2)将 y 1 沿 x 轴翻折,再向右平移2个单位,得到抛物线 y 2 ,直线 y = m ( m > 0 ) 交 y 2 于 M 、 N 两点,求线段 MN 的长度(用含 m 的代数式表示);
(3)在(2)的条件下, y 1 、 y 2 交于 A 、 B 两点,如果直线 y = m 与 y 1 、 y 2 的图象形成的封闭曲线交于 C 、 D 两点 ( C 在左侧),直线 y = − m 与 y 1 、 y 2 的图象形成的封闭曲线交于 E 、 F 两点 ( E 在左侧),求证:四边形 CEFD 是平行四边形.
如图1,在 ΔAPE 中, ∠ PAE = 90 ° , PO 是 ΔAPE 的角平分线,以 O 为圆心, OA 为半径作圆交 AE 于点 G .
(1)求证:直线 PE 是 ⊙ O 的切线;
(2)在图2中,设 PE 与 ⊙ O 相切于点 H ,连接 AH ,点 D 是 ⊙ O 的劣弧 AH ̂ 上一点,过点 D 作 ⊙ O 的切线,交 PA 于点 B ,交 PE 于点 C ,已知 ΔPBC 的周长为4, tan ∠ EAH = 1 2 ,求 EH 的长.
如图,一次函数 y = kx + b 的图象与反比例函数 y = m x ( x > 0 ) 的图象交于 A ( 2 , − 1 ) , B ( 1 2 , n ) 两点,直线 y = 2 与 y 轴交于点 C .
(1)求一次函数与反比例函数的解析式;
(2)求 ΔABC 的面积.
如图, CD 是一高为4米的平台, AB 是与 CD 底部相平的一棵树,在平台顶 C 点测得树顶 A 点的仰角 α = 30 ° ,从平台底部向树的方向水平前进3米到达点 E ,在点 E 处测得树顶 A 点的仰角 β = 60 ° ,求树高 AB (结果保留根号)
2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?