在中, , 将绕点顺时针旋转角, 得, 交于点,分别交于两点.(1) 在旋转过程中, 线段与有怎样的数量关系? 证明你的结论;(2) 当时, 试判断四边形的形状, 并说明理由;(3) 在(2)的情况下, 求线段的长.
初中生对待学习的态度一直是教育工作者关注的问题之一.为此无锡市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了名学生; (2)将图①补充完整; (3)求出图②中C级所占的圆心角的度数; (4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
如图,在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M. (1)试说明:AE⊥BF; (2)判断线段DF与CE的大小关系,并说明理由.
(1)解方程:;(2)解不等式组.
计算: (1); (2).
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C (1)求抛物线的函数解析式. (2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标. (3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.