设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束。(1)求只进行了三局比赛,比赛就结束的概率;(2)记从比赛开始到比赛结束所需比赛的局数为,求的概率分布列和数学期望。
(本小题满分10分)如图,在中,为AC边上的高,沿BD将翻折,使得得到几何体 (I)求证:AC^平面BCD; (Ⅱ)求异面直线AB与CD所成角的正切值.
(本小题满分10分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点. (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG .
(本小题满分10分)已知函数 (I)求; (Ⅱ)求函数f(x)图象的对称轴方程.
已知函数. (I)求证:在上单调递增; (Ⅱ)函数有三个零点,求值; (Ⅲ)对恒成立,求的取值范围.
(本小题满分15分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值.