已知数列是等差数列,(1)判断数列是否是等差数列,并说明理由;(2)如果,试写出数列的通项公式;(3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。
选修4一1:几何证明选讲 如图,是圆的直径,弦于点,是延长线上一点,切圆于,交于. (1)求证:为等腰三角形; (2)求线段的长.
已知函数(). (1)若,求曲线在点处的切线方程; (2)若不等式对任意恒成立,求实数的取值范围;
已知椭圆的两个焦点为、,离心率为,直线与椭圆相交于、两点,且满足,,为坐标原点. (1)求椭圆的方程; (2)证明:的面积为定值.
如图,在四棱锥中,⊥平面,, ,,,为线段上的点, (1)证明:⊥平面; (2)若是的中点,求与平面所成的角的正切值.
下面的茎叶图记录了甲、乙两代表队各名同学在一次英语听力比赛中的成绩(单位:分). 已知甲代表队数据的中位数为,乙代表队数据的平均数是. (1)求,的值; (2)若分别从甲、乙两队随机各抽取名成绩不低于分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率; (3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).