如图,在四棱锥中,⊥平面,, ,,,为线段上的点,(1)证明:⊥平面;(2)若是的中点,求与平面所成的角的正切值.
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求: (1)要使工厂有盈利,产品数量x应控制在什么范围? (2)工厂生产多少台产品时盈利最大?
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下: ①租用时间不超过1小时,免费; ②租用时间为1小时以上且不超过2小时,收费1元; ③租用时间为2小时以上且不超过3小时,收费2元; ④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算) 已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3. (1)求甲、乙两人所付租车费相同的概率; (2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E.
在数列中, (1)证明是等比数列,并求的通项公式; (2)求的前n项和
已知,函数 (1)求方程g(x)=0的解集; (2)求函数f(x)的最小正周期及其单调增区
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)P是圆C上一动点,点Q满足3,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.